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Language is inherently contextual.

• Words or characters in 
language are dependent upon 
one another!

• Sequence modeling allows 
us to make use of sequential 
information in language

• There are many ways to 
implement sequence models, 
including but not limited to:

• Hidden Markov models
• Neural networks
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What are 
Hidden 
Markov 
Models 
(HMMs)?

• Probabilistic generative models for 
sequences

• Make predictions based on an 
underlying set of hidden states
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How does sequence 
labeling differ from 

other types of 
classification?

• Other types of classification: Often 
classify entire text samples into 
discrete, predefined groups

Spam Not Spam

ARE YOU LOOKING FOR WAYS TO ORGANIZE YOUR 
**INBOX**????

Check out our product now!!!!!!!  Follow the link here to 
take your first step towards the ibnox of your dreams~~~
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In these 
scenarios, models 
assume that the 
individual 
datapoints being 
classified are 
disconnected and 
independent.

• Many NLP problems do not satisfy this 
assumption

• Often problems involve:
• Interconnected decisions
• Each of which are mutually 

dependent
• Each of which resolve different 

ambiguities
• For these problems, different learning 

and inference techniques are needed!
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Sequence Labeling
• One example: sequence labeling tasks.
• Objective: Find the label for the next item, based on the labels of other 

items in the sequence. 

Give me a break! Did the window break?

verb

pronoun

determiner

noun

verb

determiner

noun

verb
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Example 
Sequence 

Labeling 
Applications

• Named entity recognition
• Semantic role labeling

Natalie Parde works at the University of Illinois at 
Chicago and lives in Chicago, Illinois.

person organization

location

Natalie drove for 15 hours from Dallas to Chicago in her 
hail-damaged Honda Accord.

agent source destination

instrument
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Probabilistic 
Sequence 
Models

• Resolving uncertainties involves 
multiple, interdependent classifications

• Two standard models:
• Hidden Markov Models
• Conditional Random Fields
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What are 
Markov 
Models?

• Finite state automata with probabilistic 
state transitions

• Markov Property: The future is independent of 
the past, given the present.

• In other words, the next state only depends 
on the current state …it is independent of 
previous history.

• Also referred to as Markov Chains
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Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4
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Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

P(q3 q2 q1 q4)
= .2 * .1 * .2 * .3
= .0012
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Hidden Markov Models

• Probabilistic generative models for sequences
• Assume an underlying set of hidden (unobserved) 

states in which the model can be
• Assume probabilistic transitions between states over 

time
• Assume probabilistic generation of items (e.g., tokens) 

from states
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Sample Hidden Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2
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Formal Definition

N
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• A Hidden Markov Model can be specified by enumerating the following properties:
• The set of states, Q
• A transition probability matrix, A, where each aij represents the probability of 

moving from state i to state j, such that ∑!"#$ 𝑎%! = 1 ∀𝑖
• A sequence of T observations, O, each drawn from a vocabulary V = v1, v2, …, 

vV
• A sequence of observation likelihoods, B, also called emission probabilities, 

each expressing the probability of an observation ot being generated from a 
state i

• A start state, q0, and final state, qF, that are not associated with observations, 
together with transition probabilities out of q0 and into qF
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Sample Hidden Markov Model

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

B2
𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

B3
𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

O = x, y, z
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Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4
q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4 N/A N/A N/A N/A N/A
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Practical 
Applications 
of HMMs
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

the = .3, her = .1, 
my = .3, Devika’s = .3

laughed = .5, ate = .2, 
slept = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3
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the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3
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the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3
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the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3
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the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3
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the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1, 
my = .3, Devika’s = .3
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Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3, 
lizard = .1, unicorn = .4

laughed = .5, ate = .2, 
slept = .3

my unicorn laughed
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the = .3, her = .1, 
my = .3, Devika’s = .3
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Three Fundamental HMM Problems

• Observation Likelihood: How likely is a particular observation 
sequence to occur?

• Decoding: What is the best sequence of hidden states for an 
observed sequence?

• What is the best sequence of labels for our test data?
• Learning: What are the transition probabilities and observation 

likelihoods that best fit the observation sequence and HMM states?
• How do we empirically fit our training data?

Natalie Parde - UIC CS 421
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One way to 
compute 

observation 
likelihood is by 

using forward 
probabilities.

Natalie Parde - UIC CS 421 27



Observation 
Likelihood

• Given a sequence of 
observations and an 
HMM, what is the 
probability that this 
sequence was generated 
by the model?

• Useful for two tasks:
• Sequence 

classification
• Selecting the most 

likely sequence

Natalie Parde - UIC CS 421
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Sequence Classification

• Assuming an HMM is available for every possible class, 
what is the most likely class for a given observation 
sequence?

• Which HMM is most likely to have generated the 
sequence?

Natalie Parde - UIC CS 421
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Most Likely Sequence
• Of two or more possible sequences, which one was most likely generated 

by a given HMM?

Sarcasm
I love long and 
confusing homework 
assignments.

Oh, yay, I just looooove
long and confusing 
homework assignments.

30



How can we compute the observation 
likelihood?
• Naïve Solution:

• Consider all possible state sequences, Q, of length T that the model, 𝜆, could 
have traversed in generating the given observation sequence, O

• Compute the probability of a given state sequence from A, and multiply it by 
the probability of generating the given observation sequence for that state 
sequence

• P(O,Q | 𝜆) = P(O | Q, 𝜆) * P(Q | 𝜆)
• Repeat for all possible state sequences, and sum over all to get P(O | 𝜆)

• But, this is computationally complex!
• O(TNT)

Natalie Parde - UIC CS 421
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How can we 
compute the 
observation 
likelihood?

• Efficient Solution:
• Forward Algorithm: Dynamic programming 

algorithm that computes the observation 
probability by summing over the probabilities 
of all possible hidden state paths that could 
generate the observation sequence.

• Implicitly folds each of these paths into a 
single forward trellis

• Why does this work?
• Markov assumption (the probability of being 

in any state at a given time t only relies on 
the probability of being in each possible 
state at time t-1).

• Works in O(TN2) time!

Natalie Parde - UIC CS 421
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Sample Problem

• It is 2799 and you are a climatologist studying the history of 
global warming

• Unfortunately, you have no official records of the weather in 
Baltimore for the summer of 2007, although you know some 
key weather patterns, which you’re representing using HMMs

• Fortunately, a major breakthrough occurs: you find Jason 
Eisner’s diary, which lists how many ice cream cones he ate 
every day that summer

• You decide to focus on a three-day sequence:
• Day 1: 3 ice cream cones
• Day 2: 1 ice cream cone
• Day 3: 3 ice cream cones

Natalie Parde - UIC CS 421
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Current Leading HMM

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
𝑃(1|ℎ𝑜𝑡!)
𝑃(2|ℎ𝑜𝑡!)
𝑃(3|ℎ𝑜𝑡!)

=
.2
.4
.4

B2
𝑃(1|𝑐𝑜𝑙𝑑!)
𝑃(2|𝑐𝑜𝑙𝑑!)
𝑃(3|𝑐𝑜𝑙𝑑!)

=
.5
.4
.1
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How do you compute your forward 
probabilities?
• Let 𝛼!(𝑗) be the probability of being in state j after seeing the first t observations, 

given your HMM 𝜆
• 𝛼!(𝑗) is computed by summing over the probabilities of every path that could lead 

you to this cell
• 𝛼! 𝑗 = 𝑃 𝑜", 𝑜#…𝑜$ , 𝑞$ = 𝑗 𝜆 = ∑!%"& 𝛼$'"(𝑖)𝑎!(𝑏((𝑜$)

• 𝑞$ = 𝑗 is the probability that the tth state in the sequence of states is state j
• 𝛼$'"(𝑖): The previous forward path probability from the previous time step
• 𝑎!(: The transition probability from previous state qi to current state qj
• 𝑏((𝑜$): The state observation likelihood of the observed item ot given the 

current state j

Natalie Parde - UIC CS 421
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Formal Algorithm
create a probability matrix forward[N+2,T]

for each state q in [1, …, N] do:

forward[q,1] ← a0,q * bq(o1)

for each time step t from 2 to T do:

for each state q in [1, …, N] do:

forward[q,t] ←∑7!89
: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞;, 𝑡 − 1 ∗ 𝑎7!,7 ∗ 𝑏7(𝑜=)

forwardprob ←∑789: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞, 𝑇
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Forward Step

Ot-2 Ot-1 Ot Ot+1

q1

q2

qN

…

𝛼t-2(1)

𝛼t-2(2)

𝛼t-2(N)

q1

q2

qN

…
𝛼t-1(1)

𝛼t-1(2)

𝛼t-1(N)

qj

𝛼t(j) = ∑! 𝛼"#$(𝑖)𝑎!%𝑏%(𝑜")

𝑏$(𝑜%)

𝑎&$

𝑎"$

𝑎!$

q1

q2

qN

…
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Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

h

start start

c

h

end end
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

38



Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

start start

c

h

end end
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

39



Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

start start

c

h

end end
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

40



Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝛼2(c) = .32 * .15 + .02 * .30 = .054

𝛼2(h) = .32 * .14 + .02 * .08 = .0464
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
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= 	
.5
.4
.1
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Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1
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q0

hot1

cold2
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.2

.7

.3
.6

.4
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We’ve so far 
tackled one 
of the 
fundamental 
HMM tasks.

• What is the probability that a sequence 
of observations fits a given HMM?

• However, there are still two remaining 
tasks to explore….
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Decoding
• Given an observation sequence 

and an HMM, what is the best 
hidden state sequence?

• How do we choose a state 
sequence that is optimal in some 
sense (e.g., best explains the 
observations)?

• Very useful for sequence 
labeling!
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Decoding

• Naïve Approach:
• For each hidden state sequence Q, compute P(O|Q)
• Pick the sequence with the highest probability

• However, this is computationally inefficient!
• O(NT)
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How can 
we decode 
sequences 
more 
efficiently?

• Viterbi Algorithm
• Another dynamic programming algorithm
• Uses a similar trellis to the Forward algorithm

• Viterbi time complexity: O(N2T)
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Viterbi Intuition

• Goal: Compute the joint probability of the observation sequence together with the 
best state sequence

• So, recursively compute the probability of the most likely subsequence of 
states that accounts for the first t observations and ends in state qj.

• 𝑣$ 𝑗 = max
)',)(,…,))*(

𝑃 𝑞,, 𝑞", … , 𝑞$'", 𝑜", … , 𝑜$ , 𝑞$ = 𝑞(|𝜆

• Also record backpointers that subsequently allow you to backtrace the most 
probable state sequence

• 𝑏𝑡$(𝑗) stores the state at time t-1 that maximizes the probability that the 
system was in state qj at time t, given the observed sequence
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Formal Algorithm
create a path probability matrix Viterbi[N+2,T]

for each state q in [1,…,N] do:
Viterbi[q,1] ← a0,q * bq(o1)
backpointer[q,1] ← 0

for each time step t in [2,…,T] do:
for each state q in [1,…,N] do:

𝑣𝑖𝑡𝑒𝑟𝑏𝑖[𝑞, 𝑡] ← max
&)∈[#,…,+]

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗ 𝑎&),& ∗ 𝑏&(𝑜.)
𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟[𝑞, 𝑡] ← argmax

&)∈[#,…,+]
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗ 𝑎&),& ∗ 𝑏&(𝑜.)

bestpathprob ← max
&)∈ #,…,+

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇

bestpathpointer ← argmax
&)∈ #,…,+

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇
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Seem 
familiar?

• Viterbi is basically the forward 
algorithm + backpointers, and 
substituting a max function for the 
summation operator
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Viterbi Trellis
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Viterbi Trellis
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3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

56



Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8 
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

57



Viterbi Trellis
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Viterbi Trellis
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Viterbi Backtrace
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Viterbi Backtrace
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Viterbi Backtrace
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Viterbi Backtrace
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4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288
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q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏 = max(.01254, .00288) = .01254
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Finally …learning!

• If we have a set of observations, can we learn the parameters 
(transition probabilities and observation likelihoods) directly?
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3 1 3 
2 1 3 
3 3 3 
3 2 2 
1 1 2

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1



Forward-Backward Algorithm

• Special case of expectation-maximization (EM) algorithm
• Also known as the Baum-Welch algorithm
• Input:

• Unlabeled sequence of observations, O
• Vocabulary of hidden states, Q

• Output: Transition probabilities and observation likelihoods
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How does 
the algorithm 
compute 
these 
outputs?
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• Iteratively estimate the counts for 
transitions from one state to 
another

• Start with base estimates for aij
and bj, and iteratively improve 
those estimates

• Get estimated probabilities by:
• Computing the forward probability 

for an observation
• Dividing that probability mass 

among all the different paths that 
contributed to this forward 
probability



The 
second 
part of this 
process 
uses the 
backward 
algorithm.

• We define the backward probability as follows:
• 𝛽$ 𝑖 = 𝑃(𝑜$-", 𝑜$-#, … , 𝑜.|𝑞$ = 𝑖, 𝜆)

• This is the probability of generating partial 
observations from time t+1 until the end of the 
sequence, given that the HMM 𝜆 is in state i at 
time t

• Also computed using a trellis, but moves 
backwards instead
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Backward Step

Ot-1 Ot Ot+1

q1

q2

qN
…

q1

q2

qN

…

𝛽t+1(1)

𝛽t+1(2)

𝛽t+1(N)

qi

𝛽t(i) = ∑$+!& 𝛽%,!(𝑗)𝑎-$𝑏$(𝑜%,!)

𝑏$(𝑜%)

𝑎-&

𝑎-"

𝑎-!

q1

q2

𝑏&(𝑜%,!)

𝑏"(𝑜%,!)

𝑏!(𝑜%,!)
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𝛽. 𝑖 = 1



Once we compute backward probabilities, we can 
start estimating transition probabilities and 
observation likelihoods.
• We re-estimate transition probabilities, aij, as follows:

• A𝑎%! =
expected # transitions from state 𝑖 to state 𝑗

expected # transitions from state 𝑖 =
∑34567583(9)889:;:<3=5(:)

86(>?)

∑345675 ∑:45
@ 83(9)889:;:<3=5(:)

86(>?)
• Check out the course textbook (Appendix A) for an in-depth discussion of how the 

numerator and denominator above are derived!
• It’s common to simplify the inner portion of the summation in the equation 

above:
• 𝜁. 𝑖, 𝑗 =

23(%)289:5:63=5(!)
26(&?)

• Therefore:
• A𝑎%! =

∑!"#$%# #!(%,')
∑!"#
$%# ∑&"#

' #!(%,')
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Re-Estimating Observation Likelihood
• We re-estimate bj as follows:

• O𝑏! 𝑣7 = expected # of times in state 𝑗 and observing symbol 8A
expected number of times in state 𝑗 =

∑
345, s.t. C34DA
6 83(:)<3(:)

86(>?)

∑3456 83(:)<3(:)
86(>?)

• Again, to simplify presentation we can abstract away the inner portion of 
the summation:

• 𝛾. 𝑗 = 23(!)63(!)
26(&?)

• Therefore:

• 2𝑏D 𝑣E =
∑
)*+ s.t. ,)*-.
/ F)(D)

∑)*+/ F)(D)
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Forward-Backward Algorithm
initialize A and B
iterate until convergence:

# Expectation Step
compute 𝛾=(𝑗) for all t and j
compute 𝜁=(𝑖, 𝑗) for all t, i, and j

# Maximization Step
𝛼GD = =𝑎GD for all i and j
𝑏D(𝑣E) = 2𝑏D(𝑣E) for all j, and all 𝑣E in the output vocab V
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Summary: 
Hidden 
Markov 
Models

• HMMs are probabilistic generative models for 
sequences

• They make predictions based on underlying hidden 
states

• Three fundamental HMM problems include:
• Computing the likelihood of a sequence of 

observations
• Determining the best sequence of hidden states 

for an observed sequence
• Learning HMM parameters given an observation 

sequence and a set of hidden states
• Observation likelihood can be computed using the 

forward algorithm
• Sequences of hidden states can be decoded using 

the Viterbi algorithm
• HMM parameters can be learned using the forward-

backward algorithm
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Language 
Modeling
• The process of building 

models that predict the 
likelihood of word or 
character sequences in a 
language
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Why is 
language 
modeling 
useful?
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• Helps identify words in noisy, 
ambiguous input

• Speech recognition or autocorrect
• Helps generate natural-sounding 

language
• Machine translation or image 

captioning



Language 
models 
come in 

many 
forms!



N-Gram Language Models
• Goal: Predict P(word|history)

• P(“spring” | “I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

P(“fall” | “I’m
 

so excited to 

be taking CS 

421 this”)
P(“refrigerator” | 

“I’m so excited 

to be taking CS 

421 this”)

P(“and” | “I’m so excited to be taking CS 421 this”)



How do we predict 
these probabilities?
• One method: Estimate it from frequency counts

• Take a large corpus
• Count the number of times you see the history
• Count the number of times the specified word 

follows the history

P(“spring” | “I’m so excited to be taking CS 421 this”) 
= C(“I’m so excited to be taking CS 421 this spring”) / 
C(“I’m so excited to be taking CS 421 this”)
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However, we don’t necessarily want to 
use our entire history.
• What if our history contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 421 this”)

Out of all possible 11-word sequences on the web, how 
many are “I’m so excited to be taking Natalie Parde’s
CS 421 this”?
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We need a better way to estimate P(word|history)!

• The solution: Instead of computing the 
probability of a word given its entire 
history, approximate the history using 
the most recent few words.

• We do this using fixed-length n-grams.

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)



Special 
N-Grams

• Most higher-order (n>3) n-
grams are simply referred 
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to 
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram
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N-gram 
models follow 
the Markov 
assumption.

• We can predict the probability of some future 
unit without looking too far into the past

• Bigram language model: Probability of a 
word depends only on the previous word

• Trigram language model: Probability of a 
word depends only on the two previous 
words

• N-gram language model: Probability of a 
word depends only on the n-1 previous 
words
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More formally….
• 𝑃 𝑤/ 𝑤"/'" ≈ 𝑃(𝑤/|𝑤/'&-"/'" )
• We can then multiply these individual word probabilities together to get the 

probability of a word sequence
• 𝑃 𝑤"/ ≈ ∏0%"

/ 𝑃(𝑤0|𝑤0'&-"0'" )

Natalie Parde - UIC CS 421

P(“Summer break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) * 
P(“is” | “break”) * P(“break” | “Summer”)



To compute n-
gram 
probabilities, 
maximum 
likelihood 
estimation is 
often used.



Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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Example: Maximum Likelihood 
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00
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🤷‍‍



We can 
learn a lot 
of useful 
things from 
n-gram 
statistics!



Which type of n-
gram is best?

• In general, the highest-order 
value of n that your data can 
support

• Sparsity increases with order, and 
sparse feature vectors are not 
very useful when training 
statistical models

• Make sure that your dataset is 
large enough to handle your 
selected n-gram size
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We’ve learned 
how to build n-
gram language 
models, but 
how do we 
evaluate them?
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• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the 
language model in an application, 
and compute changes in task 
performance

• Intrinsic evaluation: Measure the 
quality of the model, independent of 
any application



Perplexity
• Intrinsic evaluation metric for language models
• Perplexity (PP) of a language model on a test set is the 

inverse probability of the test set, normalized by the 
number of words in the test set
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More formally….

• 𝑃𝑃 𝑊 = ( 0
1(2#2)…2()

= ( ∏%40
5 0

1(2*|2#…2*%#)

• Where W is a test set containing words w1, w2, …,  
wn

• History size depends on n-gram size
• 𝑃(𝑤%|𝑤%70) vs 𝑃(𝑤%|𝑤%78𝑤%70), etc.

• Higher conditional probability of a word sequence → 
lower perplexity

• Minimizing perplexity = maximizing test set 
probability according to the language model
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“421”) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)
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Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language 
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

PP(“CS 421 Statistical Natural Language Processing 
University of Illinois Chicago”) 

= #+ !
1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!

= 10
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Example: Perplexity

Word Frequency P(Word)
CS 1
421 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)
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Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago 
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
( 1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

PP(“CS 521 Statistical Natural Language Processing 
University of Illinois Chicago”) 

= #+ !
1.1!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!

= 1.73
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Perplexity can be used to 
compare different 
language models.



Perplexity can be used to 
compare different 
language models.



A cautionary note….

• Improvements in perplexity do not guarantee improvements in task 
performance!

• However, the two are often correlated (and perplexity is quicker and 
easier to check)

• Strong language model evaluations also include an extrinsic 
evaluation component
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Just like with HMMs, we can use n-gram 
language models to generate text.

Natalie Parde - UIC CS 421 112

1

Select an n-gram randomly from the 
distribution of all n-grams in the 
training corpus

2

Randomly select an n-gram from the 
same distribution, dependent on the 
previous n-gram 
•If we're using a bigram model and the 
previous bigram was "CS 421," our next 
bigram has to start with "421")

3

Repeat until the sentence-final token is 
reached



N-gram 
order 
affects 
generation 
output!
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In the case of a 
Shakespearean 
language 
model….



“Zero” 
probabilities 
create 
challenges for 
language 
models.

• In practice, language is varied and 
often unexpected---few combinations 
are truly impossible

• Zero probabilities also interfere with 
perplexity calculations

• Zero probabilities occur in two different 
scenarios:

• Unknown words (out-of-
vocabulary words)

• Known words in unseen contexts

Natalie Parde - UIC CS 421 115



Modeling 
Unknown 
Words

• Add a pseudoword <UNK> to the vocabulary

• Then….
• Option A:

• Choose a fixed words list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with 

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Option C:
• Replace the first occurrence of each word with <UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware: If <UNK> ends up with a high probability (e.g., because you 
have a small vocabulary), your language model will have artificially 
lower perplexity!

• Make sure to compare to other language models using the 
same vocabulary to avoid gaming this metric
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We can handle known words in previously unseen 
contexts by applying smoothing techniques.
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Smoothing

• Taking a bit of the probability mass from more frequent events and giving it 
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Natalie Parde - UIC CS 421

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1     🥰



Laplace Smoothing

N
atalie Parde -U

IC
 C

S 421

• Add one to all n-gram counts before they are normalized into 
probabilities

• Not the highest-performing technique for language modeling, but a 
useful baseline

• Practical method for other text classification tasks
• 𝑃 𝑤G = M9

:
→ 𝑃Laplace 𝑤G = M9N9

:NO



Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤- =
𝑐-
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤- =
𝑐-
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421



Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot
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Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08
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Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1



Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12

= 0.08

Probabilities: 
Before and 
After



Add-K Smoothing
• Moves a bit less of the probability mass from seen to unseen events
• Rather than adding one to each count, add a fractional count

• 0.5
• 0.05
• 0.01

• The value k can be optimized on a validation set

• 𝑃 𝑤! = 7?
&

→ 𝑃Add−K 𝑤! = 7?-0
&-08

• 𝑃 𝑤/|𝑤/'" = 7(:@*(:@)
7(:@*()

→ 𝑃Add−K 𝑤/|𝑤/'" = 7 :@*(:@ -0
7 :@*( -08
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Add-K smoothing is useful for some tasks, 
but still tends to be suboptimal for language 
modeling.



Interpolation
• Linear interpolation

• 𝑃; 𝑤Q 𝑤QRS𝑤QR9 = 𝜆9𝑃 𝑤Q 𝑤QRS𝑤QR9 + 𝜆S𝑃 𝑤Q 𝑤QR9 + 𝜆T𝑃(𝑤Q)
• Where ∑% 𝜆% = 1

• Conditional interpolation
• 𝑃A 𝑤/ 𝑤/0"𝑤/0! = 𝜆!(𝑤/0"/0!)𝑃 𝑤/ 𝑤/0"𝑤/0! + 𝜆"(𝑤/0"/0!)𝑃 𝑤/ 𝑤/0! + 𝜆#(𝑤/0"/0!)𝑃(𝑤/)

Context-conditioned weights
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N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1



Backoff

• If the n-gram we need has zero 
counts, approximate it by backing 
off to the (n-1)-gram

• Continue backing off until we reach 
a size that has non-zero counts

• Just like with smoothing, some 
probability mass from higher-order 
n-grams needs to be redistributed to 
lower-order n-grams
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Katz Backoff



Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• 𝑃AbsoluteDiscounting 𝑤! 𝑤!'" = < :?*(:? '=
∑B <(:?*(?)

+ 𝜆 𝑤!'" 𝑃(𝑤!)
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Discounted Bigram Unigram with interpolation weight



Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are 
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135 

million results on Google), but it’s mainly frequent when it follows the word 
“new”

• Creates a unigram model that estimates the probability of seeing the word w as a 
novel continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = ?∶< ?: A,

BC,:C :< BC:C A,
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Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9 ) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9 )𝑃KN(𝑤G|𝑤GRQNS
GR9 )
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Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9 ) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9 )𝑃KN(𝑤G|𝑤GRQNS
GR9 )

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤-0! =
𝑑

∑D 𝐶(𝑤-0!𝑣)
𝑤 ∶ 𝑐 𝑤-0!𝑤 > 0
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Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9 ) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9 )𝑃KN(𝑤G|𝑤GRQNS
GR9 )

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤-0! =
𝑑

∑D 𝐶(𝑤-0!𝑣)
𝑤 ∶ 𝑐 𝑤-0!𝑤 > 0

Normalized discount Number of word types that can follow 𝑤-0!
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Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9 ) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9 )𝑃KN(𝑤G|𝑤GRQNS
GR9 )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams
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Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9 ) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9 )𝑃KN(𝑤G|𝑤GRQNS
GR9 )

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single 
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the 
uniform distribution (𝜀 = empty string)

𝑃E& 𝑤 =
max(𝑐E& 𝑤 − 𝑑, 0)

∑FA 𝑐E&(𝑤A) + 𝜆(𝜀)
1
𝑉
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Stupid Backoff
• Gives up the idea of trying to make the language model a true 

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤1 𝑤12345125 = $
6(7GHIJK

G )
6(7GHIJK

GHK )
if 𝑐 𝑤123451 > 0

𝜆𝑆 𝑤1 𝑤12348125 otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = G(2)
H

Generally, 0.4 works well (Brants et al., 2007)
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Summary: 
Language 
Modeling 
with N-
Grams
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• N-grams: Sequences of n letters
• Language models: Statistical 

models of language based on 
observed word or character co-
occurrences

• N-gram probabilities can be 
computed using maximum 
likelihood estimation

• Language models can be 
intrinsically evaluated using 
perplexity

• Unknown words can be handled 
using <UNK> tokens

• Known words in unseen contexts can 
be handled using smoothing


