
Hidden Markov
Models and

Language
Modeling with

N-Grams
Natalie Parde

UIC CS 421

Language is inherently contextual.

• Words or characters in
language are dependent upon
one another!

• Sequence modeling allows
us to make use of sequential
information in language

• There are many ways to
implement sequence models,
including but not limited to:

• Hidden Markov models
• Neural networks

Natalie Parde - UIC CS 421
2

What are
Hidden
Markov
Models
(HMMs)?

• Probabilistic generative models for
sequences

• Make predictions based on an
underlying set of hidden states

Natalie Parde - UIC CS 421
3

How does sequence
labeling differ from

other types of
classification?

• Other types of classification: Often
classify entire text samples into
discrete, predefined groups

Spam Not Spam

ARE YOU LOOKING FOR WAYS TO ORGANIZE YOUR
INBOX????

Check out our product now!!!!!!! Follow the link here to
take your first step towards the ibnox of your dreams~~~

Natalie Parde - UIC CS 421 4

In these
scenarios, models
assume that the
individual
datapoints being
classified are
disconnected and
independent.

• Many NLP problems do not satisfy this
assumption

• Often problems involve:
• Interconnected decisions
• Each of which are mutually

dependent
• Each of which resolve different

ambiguities
• For these problems, different learning

and inference techniques are needed!

N
atalie Parde -U

IC
 C

S 421

5

Sequence Labeling
• One example: sequence labeling tasks.
• Objective: Find the label for the next item, based on the labels of other

items in the sequence.

Give me a break! Did the window break?

verb

pronoun

determiner

noun

verb

determiner

noun

verb

Natalie Parde - UIC CS 421 6

Example
Sequence

Labeling
Applications

• Named entity recognition
• Semantic role labeling

Natalie Parde works at the University of Illinois at
Chicago and lives in Chicago, Illinois.

person organization

location

Natalie drove for 15 hours from Dallas to Chicago in her
hail-damaged Honda Accord.

agent source destination

instrument

Natalie Parde - UIC CS 421 7

Probabilistic
Sequence
Models

• Resolving uncertainties involves
multiple, interdependent classifications

• Two standard models:
• Hidden Markov Models
• Conditional Random Fields

Natalie Parde - UIC CS 421
8

What are
Markov
Models?

• Finite state automata with probabilistic
state transitions

• Markov Property: The future is independent of
the past, given the present.

• In other words, the next state only depends
on the current state …it is independent of
previous history.

• Also referred to as Markov Chains

Natalie Parde - UIC CS 421
9

Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

Natalie Parde - UIC CS 421 10

Sample Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

P(q3 q2 q1 q4)
= .2 * .1 * .2 * .3
= .0012

Natalie Parde - UIC CS 421 11

Hidden Markov Models

• Probabilistic generative models for sequences
• Assume an underlying set of hidden (unobserved)

states in which the model can be
• Assume probabilistic transitions between states over

time
• Assume probabilistic generation of items (e.g., tokens)

from states

12

Sample Hidden Markov Model

q0 q4

q2

q1 q3

.1

.2
.7

.2

.1

.4 .3

.1
.2

.7

.1

.3

.2

.4

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

Natalie Parde - UIC CS 421 13

Formal Definition

N
atalie Parde -U

IC
 C

S 421

• A Hidden Markov Model can be specified by enumerating the following properties:
• The set of states, Q
• A transition probability matrix, A, where each aij represents the probability of

moving from state i to state j, such that ∑!"#$ 𝑎%! = 1 ∀𝑖
• A sequence of T observations, O, each drawn from a vocabulary V = v1, v2, …,

vV
• A sequence of observation likelihoods, B, also called emission probabilities,

each expressing the probability of an observation ot being generated from a
state i

• A start state, q0, and final state, qF, that are not associated with observations,
together with transition probabilities out of q0 and into qF

14

Sample Hidden Markov Model

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

𝑃(𝑥|𝑞!)
𝑃(𝑦|𝑞!)
𝑃(𝑧|𝑞!)

=
.2
.4
.4

B2
𝑃(𝑥|𝑞")
𝑃(𝑦|𝑞")
𝑃(𝑧|𝑞")

=
.1
.4
.5

B3
𝑃(𝑥|𝑞#)
𝑃(𝑦|𝑞#)
𝑃(𝑧|𝑞#)

=
.7
.1
.2

O = x, y, z

Natalie Parde - UIC CS 421 15

Corresponding Transition Matrix

Natalie Parde - UIC CS 421

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4
B1

!(#|%!)
!('|%!)
!((|%!)

= 	
.2
.4
.4

B2
!(#|%")
!('|%")
!((|%")

= 	
.1
.4
.5

B3
!(#|%#)
!('|%#)
!((|%#)

= 	
.7
.1
.2

O = x, y, z

q0 q1 q2 q3 q4
q0 N/A .7 .1 .2 N/A

q1 N/A .1 .4 .2 .3

q2 N/A .2 N/A .7 .1

q3 N/A .2 .1 .3 .4

q4 N/A N/A N/A N/A N/A

16

Practical
Applications
of HMMs

17

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

the = .3, her = .1,
my = .3, Devika’s = .3

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421 18

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

19

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

20

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

21

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

22

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

23

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

24

Sample Text Generation

q0 q4

q2

q1 q3

a02 = .1

a03 = .2
a01 = .7

a21 = .2

a24 = .1

a12 = .4

a14 = .3a11 = .1
a13 = .2

a23 = .7

a32 = .1

a33 = .3

a31 = .2

a34 = .4

dog = .2, cat = .3,
lizard = .1, unicorn = .4

laughed = .5, ate = .2,
slept = .3

my unicorn laughed

Natalie Parde - UIC CS 421

the = .3, her = .1,
my = .3, Devika’s = .3

25

Three Fundamental HMM Problems

• Observation Likelihood: How likely is a particular observation
sequence to occur?

• Decoding: What is the best sequence of hidden states for an
observed sequence?

• What is the best sequence of labels for our test data?
• Learning: What are the transition probabilities and observation

likelihoods that best fit the observation sequence and HMM states?
• How do we empirically fit our training data?

Natalie Parde - UIC CS 421
26

One way to
compute

observation
likelihood is by

using forward
probabilities.

Natalie Parde - UIC CS 421 27

Observation
Likelihood

• Given a sequence of
observations and an
HMM, what is the
probability that this
sequence was generated
by the model?

• Useful for two tasks:
• Sequence

classification
• Selecting the most

likely sequence

Natalie Parde - UIC CS 421
28

Sequence Classification

• Assuming an HMM is available for every possible class,
what is the most likely class for a given observation
sequence?

• Which HMM is most likely to have generated the
sequence?

Natalie Parde - UIC CS 421
29

Most Likely Sequence
• Of two or more possible sequences, which one was most likely generated

by a given HMM?

Sarcasm
I love long and
confusing homework
assignments.

Oh, yay, I just looooove
long and confusing
homework assignments.

30

How can we compute the observation
likelihood?
• Naïve Solution:

• Consider all possible state sequences, Q, of length T that the model, 𝜆, could
have traversed in generating the given observation sequence, O

• Compute the probability of a given state sequence from A, and multiply it by
the probability of generating the given observation sequence for that state
sequence

• P(O,Q | 𝜆) = P(O | Q, 𝜆) * P(Q | 𝜆)
• Repeat for all possible state sequences, and sum over all to get P(O | 𝜆)

• But, this is computationally complex!
• O(TNT)

Natalie Parde - UIC CS 421
31

How can we
compute the
observation
likelihood?

• Efficient Solution:
• Forward Algorithm: Dynamic programming

algorithm that computes the observation
probability by summing over the probabilities
of all possible hidden state paths that could
generate the observation sequence.

• Implicitly folds each of these paths into a
single forward trellis

• Why does this work?
• Markov assumption (the probability of being

in any state at a given time t only relies on
the probability of being in each possible
state at time t-1).

• Works in O(TN2) time!

Natalie Parde - UIC CS 421
32

Sample Problem

• It is 2799 and you are a climatologist studying the history of
global warming

• Unfortunately, you have no official records of the weather in
Baltimore for the summer of 2007, although you know some
key weather patterns, which you’re representing using HMMs

• Fortunately, a major breakthrough occurs: you find Jason
Eisner’s diary, which lists how many ice cream cones he ate
every day that summer

• You decide to focus on a three-day sequence:
• Day 1: 3 ice cream cones
• Day 2: 1 ice cream cone
• Day 3: 3 ice cream cones

Natalie Parde - UIC CS 421
33

Current Leading HMM

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
𝑃(1|ℎ𝑜𝑡!)
𝑃(2|ℎ𝑜𝑡!)
𝑃(3|ℎ𝑜𝑡!)

=
.2
.4
.4

B2
𝑃(1|𝑐𝑜𝑙𝑑!)
𝑃(2|𝑐𝑜𝑙𝑑!)
𝑃(3|𝑐𝑜𝑙𝑑!)

=
.5
.4
.1

Natalie Parde - UIC CS 421 34

How do you compute your forward
probabilities?
• Let 𝛼!(𝑗) be the probability of being in state j after seeing the first t observations,

given your HMM 𝜆
• 𝛼!(𝑗) is computed by summing over the probabilities of every path that could lead

you to this cell
• 𝛼! 𝑗 = 𝑃 𝑜", 𝑜#…𝑜$, 𝑞$ = 𝑗 𝜆 = ∑!%"& 𝛼$'"(𝑖)𝑎!(𝑏((𝑜$)

• 𝑞$ = 𝑗 is the probability that the tth state in the sequence of states is state j
• 𝛼$'"(𝑖): The previous forward path probability from the previous time step
• 𝑎!(: The transition probability from previous state qi to current state qj
• 𝑏((𝑜$): The state observation likelihood of the observed item ot given the

current state j

Natalie Parde - UIC CS 421
35

Formal Algorithm
create a probability matrix forward[N+2,T]

for each state q in [1, …, N] do:

forward[q,1] ← a0,q * bq(o1)

for each time step t from 2 to T do:

for each state q in [1, …, N] do:

forward[q,t] ←∑7!89
: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞;, 𝑡 − 1 ∗ 𝑎7!,7 ∗ 𝑏7(𝑜=)

forwardprob ←∑789: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑞, 𝑇

Natalie Parde - UIC CS 421 36

Forward Step

Ot-2 Ot-1 Ot Ot+1

q1

q2

qN

…

𝛼t-2(1)

𝛼t-2(2)

𝛼t-2(N)

q1

q2

qN

…
𝛼t-1(1)

𝛼t-1(2)

𝛼t-1(N)

qj

𝛼t(j) = ∑! 𝛼"#$(𝑖)𝑎!%𝑏%(𝑜")

𝑏$(𝑜%)

𝑎&$

𝑎"$

𝑎!$

q1

q2

qN

…

Natalie Parde - UIC CS 421 37

Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

38

Forward Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

39

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

40

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

41

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

42

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝛼2(c) = .32 * .15 + .02 * .30 = .054

𝛼2(h) = .32 * .14 + .02 * .08 = .0464

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

43

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

44

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝛼3(h) = .0464 * .28 + .054 * .16 = .021632

𝛼3(c) = .0464 * .03 + .054 * .06 = .004632

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

45

Forward Trellis

3 1 3

c

h

end

start

c

h

𝛼1(c) = .02

𝛼1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝛼2(c) = .054

𝛼2(h) = .0464

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝛼3(h) = .0464 * .28 + .054 * .16 = .021632

𝛼3(c) = .0464 * .03 + .054 * .06 = .004632

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝛼 = .021632 + .004632 = 0.026264

46

We’ve so far
tackled one
of the
fundamental
HMM tasks.

• What is the probability that a sequence
of observations fits a given HMM?

• However, there are still two remaining
tasks to explore….

Natalie Parde - UIC CS 421 47

Decoding
• Given an observation sequence

and an HMM, what is the best
hidden state sequence?

• How do we choose a state
sequence that is optimal in some
sense (e.g., best explains the
observations)?

• Very useful for sequence
labeling!

Natalie Parde - UIC CS 421
48

Decoding

• Naïve Approach:
• For each hidden state sequence Q, compute P(O|Q)
• Pick the sequence with the highest probability

• However, this is computationally inefficient!
• O(NT)

Natalie Parde - UIC CS 421
49

How can
we decode
sequences
more
efficiently?

• Viterbi Algorithm
• Another dynamic programming algorithm
• Uses a similar trellis to the Forward algorithm

• Viterbi time complexity: O(N2T)

Natalie Parde - UIC CS 421
50

Viterbi Intuition

• Goal: Compute the joint probability of the observation sequence together with the
best state sequence

• So, recursively compute the probability of the most likely subsequence of
states that accounts for the first t observations and ends in state qj.

• 𝑣$ 𝑗 = max
)',)(,…,))*(

𝑃 𝑞,, 𝑞", … , 𝑞$'", 𝑜", … , 𝑜$, 𝑞$ = 𝑞(|𝜆

• Also record backpointers that subsequently allow you to backtrace the most
probable state sequence

• 𝑏𝑡$(𝑗) stores the state at time t-1 that maximizes the probability that the
system was in state qj at time t, given the observed sequence

Natalie Parde - UIC CS 421
51

Formal Algorithm
create a path probability matrix Viterbi[N+2,T]

for each state q in [1,…,N] do:
Viterbi[q,1] ← a0,q * bq(o1)
backpointer[q,1] ← 0

for each time step t in [2,…,T] do:
for each state q in [1,…,N] do:

𝑣𝑖𝑡𝑒𝑟𝑏𝑖[𝑞, 𝑡] ← max
&)∈[#,…,+]

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗ 𝑎&),& ∗ 𝑏&(𝑜.)
𝑏𝑎𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑒𝑟[𝑞, 𝑡] ← argmax

&)∈[#,…,+]
𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞-, 𝑡 − 1 ∗ 𝑎&),& ∗ 𝑏&(𝑜.)

bestpathprob ← max
&)∈ #,…,+

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇

bestpathpointer ← argmax
&)∈ #,…,+

𝑣𝑖𝑡𝑒𝑟𝑏𝑖 𝑞′, 𝑇

Natalie Parde - UIC CS 421 52

Seem
familiar?

• Viterbi is basically the forward
algorithm + backpointers, and
substituting a max function for the
summation operator

Natalie Parde - UIC CS 421
53

Viterbi Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

54

Viterbi Trellis

3 1 3

c

h

end

start

c

h

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

55

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

56

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h
P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

57

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

58

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start start

c

h

end end

𝑣2(c) = max(.32 * .15, .02 * .30) = .048

𝑣2(h) = max(.32 * .14, .02 * .08) = .0448

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

59

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

60

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝑣3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

61

Viterbi Trellis

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝑣3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏 = max(.01254, .00288) = .01254

62

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝑣2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏 = max(.01254, .00288) = .01254

63

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝑣1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏 = max(.01254, .00288) = .01254

64

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝒗1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏 = max(.01254, .00288) = .01254

65

Viterbi Backtrace

3 1 3

c

h

end

start

c

h

𝑣1(c) = .02

𝒗1(h) = .32

c

startq0

q1

q2

qF

o1 o2 o3

end

P(c|start) *
 P(3|c)

.2 * .1

P(h
|st

art
) *

 P
(3|

h)

.8
* .

4

h

P(c|c) * P(1|c)
.6* .5

P(h|c) * P
(1|h)

.4* .2

P(h|h) * P(1|h)
.7* .2

P(c|h) * P(1|c)

.3* .5

start

𝑣2(c) = .048

𝒗2(h) = .0448

start

c

h

end end

P(c|c) * P(3|c)
.6* .1

P(h|c) * P
(3|h)

.4* .4

P(h|h) * P(3|h)
.7* .4

P(c|h) * P(3|c)

.3* .1

𝒗3(h) = max(.0448 * .28, .048 * .16) = .01254

𝑣3(c) = .max(.0448 * .03, .048 * .06) = .00288

Natalie Parde - UIC CS 421

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

𝑏𝑒𝑠𝑡𝑝𝑎𝑡ℎ𝑝𝑟𝑜𝑏 = max(.01254, .00288) = .01254

66

Finally …learning!

• If we have a set of observations, can we learn the parameters
(transition probabilities and observation likelihoods) directly?

Natalie Parde - UIC CS 421 67

3 1 3
2 1 3
3 3 3
3 2 2
1 1 2

q0

hot1

cold2

.8

.2

.7

.3
.6

.4

B1
!(1|ℎ&'!)
!(2|ℎ&'!)
!(3|ℎ&'!)

= 	
.2
.4
.4

B2
!(1|/&01!)
!(2|/&01!)
!(3|/&01!)

= 	
.5
.4
.1

Forward-Backward Algorithm

• Special case of expectation-maximization (EM) algorithm
• Also known as the Baum-Welch algorithm
• Input:

• Unlabeled sequence of observations, O
• Vocabulary of hidden states, Q

• Output: Transition probabilities and observation likelihoods

Natalie Parde - UIC CS 421 68

How does
the algorithm
compute
these
outputs?

69

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Iteratively estimate the counts for
transitions from one state to
another

• Start with base estimates for aij
and bj, and iteratively improve
those estimates

• Get estimated probabilities by:
• Computing the forward probability

for an observation
• Dividing that probability mass

among all the different paths that
contributed to this forward
probability

The
second
part of this
process
uses the
backward
algorithm.

• We define the backward probability as follows:
• 𝛽$ 𝑖 = 𝑃(𝑜$-", 𝑜$-#, … , 𝑜.|𝑞$ = 𝑖, 𝜆)

• This is the probability of generating partial
observations from time t+1 until the end of the
sequence, given that the HMM 𝜆 is in state i at
time t

• Also computed using a trellis, but moves
backwards instead

Natalie Parde - UIC CS 421 70

Backward Step

Ot-1 Ot Ot+1

q1

q2

qN
…

q1

q2

qN

…

𝛽t+1(1)

𝛽t+1(2)

𝛽t+1(N)

qi

𝛽t(i) = ∑$+!& 𝛽%,!(𝑗)𝑎-$𝑏$(𝑜%,!)

𝑏$(𝑜%)

𝑎-&

𝑎-"

𝑎-!

q1

q2

𝑏&(𝑜%,!)

𝑏"(𝑜%,!)

𝑏!(𝑜%,!)

Natalie Parde - UIC CS 421 71

𝛽. 𝑖 = 1

Once we compute backward probabilities, we can
start estimating transition probabilities and
observation likelihoods.
• We re-estimate transition probabilities, aij, as follows:

• A𝑎%! =
expected # transitions from state 𝑖 to state 𝑗

expected # transitions from state 𝑖 =
∑34567583(9)889:;:<3=5(:)

86(>?)

∑345675 ∑:45
@ 83(9)889:;:<3=5(:)

86(>?)
• Check out the course textbook (Appendix A) for an in-depth discussion of how the

numerator and denominator above are derived!
• It’s common to simplify the inner portion of the summation in the equation

above:
• 𝜁. 𝑖, 𝑗 =

23(%)289:5:63=5(!)
26(&?)

• Therefore:
• A𝑎%! =

∑!"#$%# #!(%,')
∑!"#
$%# ∑&"#

' #!(%,')

Natalie Parde - UIC CS 421 72

Re-Estimating Observation Likelihood
• We re-estimate bj as follows:

• O𝑏! 𝑣7 = expected # of times in state 𝑗 and observing symbol 8A
expected number of times in state 𝑗 =

∑
345, s.t. C34DA
6 83(:)<3(:)

86(>?)

∑3456 83(:)<3(:)
86(>?)

• Again, to simplify presentation we can abstract away the inner portion of
the summation:

• 𝛾. 𝑗 = 23(!)63(!)
26(&?)

• Therefore:

• 2𝑏D 𝑣E =
∑
)*+ s.t. ,)*-.
/ F)(D)

∑)*+/ F)(D)

Natalie Parde - UIC CS 421 73

Forward-Backward Algorithm
initialize A and B
iterate until convergence:

Expectation Step
compute 𝛾=(𝑗) for all t and j
compute 𝜁=(𝑖, 𝑗) for all t, i, and j

Maximization Step
𝛼GD = =𝑎GD for all i and j
𝑏D(𝑣E) = 2𝑏D(𝑣E) for all j, and all 𝑣E in the output vocab V

Natalie Parde - UIC CS 421 74

Summary:
Hidden
Markov
Models

• HMMs are probabilistic generative models for
sequences

• They make predictions based on underlying hidden
states

• Three fundamental HMM problems include:
• Computing the likelihood of a sequence of

observations
• Determining the best sequence of hidden states

for an observed sequence
• Learning HMM parameters given an observation

sequence and a set of hidden states
• Observation likelihood can be computed using the

forward algorithm
• Sequences of hidden states can be decoded using

the Viterbi algorithm
• HMM parameters can be learned using the forward-

backward algorithm

Natalie Parde - UIC CS 421 75

Language
Modeling
• The process of building

models that predict the
likelihood of word or
character sequences in a
language

Natalie Parde - UIC CS 421 76

Why is
language
modeling
useful?

77

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Helps identify words in noisy,
ambiguous input

• Speech recognition or autocorrect
• Helps generate natural-sounding

language
• Machine translation or image

captioning

Language
models
come in

many
forms!

N-Gram Language Models
• Goal: Predict P(word|history)

• P(“spring” | “I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

P(“fall” | “I’m

so excited to

be taking CS

421 this”)
P(“refrigerator” |

“I’m so excited

to be taking CS

421 this”)

P(“and” | “I’m so excited to be taking CS 421 this”)

How do we predict
these probabilities?
• One method: Estimate it from frequency counts

• Take a large corpus
• Count the number of times you see the history
• Count the number of times the specified word

follows the history

P(“spring” | “I’m so excited to be taking CS 421 this”)
= C(“I’m so excited to be taking CS 421 this spring”) /
C(“I’m so excited to be taking CS 421 this”)

Natalie Parde - UIC CS 421

However, we don’t necessarily want to
use our entire history.
• What if our history contains uncommon words?
• What if we have limited computing resources?

P(“spring” | “I’m so excited to be taking Natalie Parde’s CS 421 this”)

Out of all possible 11-word sequences on the web, how
many are “I’m so excited to be taking Natalie Parde’s
CS 421 this”?

Natalie Parde - UIC CS 421

We need a better way to estimate P(word|history)!

• The solution: Instead of computing the
probability of a word given its entire
history, approximate the history using
the most recent few words.

• We do this using fixed-length n-grams.

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

Special
N-Grams

• Most higher-order (n>3) n-
grams are simply referred
to using the value of n

• 4-gram
• 5-gram

• However, lower-order n-
grams are often referred to
using special terms:

• Unigram (1-gram)
• Bigram (2-gram)
• Trigram (3-gram)

P(“spring” | “taking CS 421 this”)

P(“spring” | “CS 421 this”)

P(“spring” | “421 this”)

P(“spring” | “this”)

5-gram

4-gram

trigram

bigram

P(“spring”)

unigram

Natalie Parde - UIC CS 421

N-gram
models follow
the Markov
assumption.

• We can predict the probability of some future
unit without looking too far into the past

• Bigram language model: Probability of a
word depends only on the previous word

• Trigram language model: Probability of a
word depends only on the two previous
words

• N-gram language model: Probability of a
word depends only on the n-1 previous
words

Natalie Parde - UIC CS 421

More formally….
• 𝑃 𝑤/ 𝑤"/'" ≈ 𝑃(𝑤/|𝑤/'&-"/'")
• We can then multiply these individual word probabilities together to get the

probability of a word sequence
• 𝑃 𝑤"/ ≈ ∏0%"

/ 𝑃(𝑤0|𝑤0'&-"0'")

Natalie Parde - UIC CS 421

P(“Summer break is already over?”)

P(“over?” | “already”) * P(“already” | “is”) *
P(“is” | “break”) * P(“break” | “Summer”)

To compute n-
gram
probabilities,
maximum
likelihood
estimation is
often used.

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Frequency
<s> I 1
I am 1
am cold. 1
cold. </s> 3
… …
is Chicago. 1
Chicago. </s> 1

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421

Example: Maximum Likelihood
Estimation
I am cold.

You are cold.

Everyone is cold.

This is Chicago.

<s> I am cold. </s>

<s> You are cold. </s>

<s> Everyone is cold. </s>

<s> This is Chicago. </s>

Bigram Freq.

<s> I 1

I am 1

am cold. 1

cold. </s> 3

… …

is Chicago. 1

Chicago. </s> 1

Unigram Freq.

<s> 4

I 1

am 1

cold. 3

… …

Chicago. 1

</s> 4

P(“I” | “<s>”) = C(“<s> I”) / C(“<s>”) = 1 / 4 = 0.25

P(“</s>” | “cold.”) = C(“cold. </s>”) / C(“cold.”) = 3 / 3 = 1.00

Natalie Parde - UIC CS 421

🤷‍‍

We can
learn a lot
of useful
things from
n-gram
statistics!

Which type of n-
gram is best?

• In general, the highest-order
value of n that your data can
support

• Sparsity increases with order, and
sparse feature vectors are not
very useful when training
statistical models

• Make sure that your dataset is
large enough to handle your
selected n-gram size

Natalie Parde - UIC CS 421 95

We’ve learned
how to build n-
gram language
models, but
how do we
evaluate them?

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• Two types of evaluation paradigms:
• Extrinsic
• Intrinsic

• Extrinsic evaluation: Embed the
language model in an application,
and compute changes in task
performance

• Intrinsic evaluation: Measure the
quality of the model, independent of
any application

Perplexity
• Intrinsic evaluation metric for language models
• Perplexity (PP) of a language model on a test set is the

inverse probability of the test set, normalized by the
number of words in the test set

Natalie Parde - UIC CS 421

More formally….

• 𝑃𝑃 𝑊 = (0
1(2#2)…2()

= (∏%40
5 0

1(2*|2#…2*%#)

• Where W is a test set containing words w1, w2, …,
wn

• History size depends on n-gram size
• 𝑃(𝑤%|𝑤%70) vs 𝑃(𝑤%|𝑤%78𝑤%70), etc.

• Higher conditional probability of a word sequence →
lower perplexity

• Minimizing perplexity = maximizing test set
probability according to the language model

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency
CS 10
421 10
Statistical 10
Natural 10
Language 10
Processing 10
University 10
of 10
Illinois 10
Chicago 10

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

P(“CS”) = C(“CS”) / C(<all unigrams>) = 10/100 = 0.1
P(“421”) = C(“421”) / C(<all unigrams>) = 10/100 = 0.1

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency P(Word)
CS 10 0.1
421 10 0.1
Statistical 10 0.1
Natural 10 0.1
Language 10 0.1
Processing 10 0.1
University 10 0.1
of 10 0.1
Illinois 10 0.1
Chicago 10 0.1

Training Set

CS 421 Statistical Natural Language
Processing University of Illinois Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

PP(“CS 421 Statistical Natural Language Processing
University of Illinois Chicago”)

= #+ !
1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!∗1.!

= 10

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency P(Word)
CS 1
421 1
Statistical 1
Natural 1
Language 1
Processing 1
University 1
of 1
Illinois 1
Chicago 91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

Natalie Parde - UIC CS 421

Example: Perplexity

Word Frequency P(Word)
CS 1 0.01
421 1 0.01
Statistical 1 0.01
Natural 1 0.01
Language 1 0.01
Processing 1 0.01
University 1 0.01
of 1 0.01
Illinois 1 0.01
Chicago 91 0.91

Training Set

Illinois Chicago Chicago Chicago Chicago
Chicago Chicago Chicago Chicago Chicago

Test String

𝑃𝑃 𝑊 =
(1
𝑃(𝑤!𝑤"…𝑤/)

=
(

K
-+!

/
1

𝑃(𝑤-|𝑤!…𝑤-0!)

PP(“CS 521 Statistical Natural Language Processing
University of Illinois Chicago”)

= #+ !
1.1!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!∗1.4!

= 1.73

Natalie Parde - UIC CS 421

Perplexity can be used to
compare different
language models.

Perplexity can be used to
compare different
language models.

A cautionary note….

• Improvements in perplexity do not guarantee improvements in task
performance!

• However, the two are often correlated (and perplexity is quicker and
easier to check)

• Strong language model evaluations also include an extrinsic
evaluation component

Natalie Parde - UIC CS 421

Just like with HMMs, we can use n-gram
language models to generate text.

Natalie Parde - UIC CS 421 112

1

Select an n-gram randomly from the
distribution of all n-grams in the
training corpus

2

Randomly select an n-gram from the
same distribution, dependent on the
previous n-gram
•If we're using a bigram model and the
previous bigram was "CS 421," our next
bigram has to start with "421")

3

Repeat until the sentence-final token is
reached

N-gram
order
affects
generation
output!

113

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

In the case of a
Shakespearean
language
model….

“Zero”
probabilities
create
challenges for
language
models.

• In practice, language is varied and
often unexpected---few combinations
are truly impossible

• Zero probabilities also interfere with
perplexity calculations

• Zero probabilities occur in two different
scenarios:

• Unknown words (out-of-
vocabulary words)

• Known words in unseen contexts

Natalie Parde - UIC CS 421 115

Modeling
Unknown
Words

• Add a pseudoword <UNK> to the vocabulary

• Then….
• Option A:

• Choose a fixed words list
• Convert any words not in that list to <UNK>
• Estimate the probabilities for <UNK> like any other word

• Option B:
• Replace all words occurring fewer than n times with

<UNK>
• Estimate the probabilities for <UNK> like any other word

• Option C:
• Replace the first occurrence of each word with <UNK>
• Estimate the probabilities for <UNK> like any other word

• Beware: If <UNK> ends up with a high probability (e.g., because you
have a small vocabulary), your language model will have artificially
lower perplexity!

• Make sure to compare to other language models using the
same vocabulary to avoid gaming this metric

Natalie Parde - UIC CS 421 116

We can handle known words in previously unseen
contexts by applying smoothing techniques.

Natalie Parde - UIC CS 421 117

Smoothing

• Taking a bit of the probability mass from more frequent events and giving it
to unseen events.

• Sometimes also called “discounting”
• Many different smoothing techniques:

• Laplace (add-one)
• Add-k
• Stupid backoff
• Kneser-Ney

Natalie Parde - UIC CS 421

Bigram Frequency
CS 421 8
CS 590 5
CS 594 2
CS 521 0 😢

Bigram Frequency
CS 421 7
CS 590 5
CS 594 2
CS 521 1 🥰

Laplace Smoothing

N
atalie Parde -U

IC
 C

S 421

• Add one to all n-gram counts before they are normalized into
probabilities

• Not the highest-performing technique for language modeling, but a
useful baseline

• Practical method for other text classification tasks
• 𝑃 𝑤G = M9

:
→ 𝑃Laplace 𝑤G = M9N9

:NO

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤- =
𝑐-
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤- =
𝑐-
𝑁

Unigram Probability

Chicago
4
18

= 0.22

is
8
18

= 0.44

cold
6
18

= 0.33

hot
0
18

= 0.00

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2
is cold 4
is hot 0
… 0

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago

is

cold

hot

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4+1
is 8+1
cold 6+1
hot 0+1

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is

is cold

is hot

Natalie Parde - UIC CS 421

Example: Laplace Smoothing
Unigram Frequency
Chicago 4
is 8
cold 6
hot 0

Bigram Frequency
Chicago is 2+1
is cold 4+1
is hot 0+1
… 0+1

Corpus Statistics:

𝑃 𝑤- = 5*
&

→ 𝑃Laplace 𝑤- = 5*,!
&,6

Unigram Probability

Chicago
5
22

= 0.23

is
9
22

= 0.41

cold
7
22

= 0.32

hot
1
22

= 0.05

Bigram Probability

Chicago is 3
4 + 4

=
3
8
= 0.38

is cold 5
8 + 4

=
5
12

= 0.42

is hot 1
8 + 4 =

1
12 = 0.08

Natalie Parde - UIC CS 421

Bigram Frequency
Chicago Chicago 0+1
Chicago is 2+1
Chicago cold 0+1
Chicago hot 0+1

Bigram Probability

Chicago is 2
4
= 0.50

is cold 4
8
= 0.50

is hot 0
8
= 0.00

Bigram Probability

Chicago is 3
8
= 0.38

is cold 5
12

= 0.42

is hot 1
12

= 0.08

Probabilities:
Before and
After

Add-K Smoothing
• Moves a bit less of the probability mass from seen to unseen events
• Rather than adding one to each count, add a fractional count

• 0.5
• 0.05
• 0.01

• The value k can be optimized on a validation set

• 𝑃 𝑤! = 7?
&

→ 𝑃Add−K 𝑤! = 7?-0
&-08

• 𝑃 𝑤/|𝑤/'" = 7(:@*(:@)
7(:@*()

→ 𝑃Add−K 𝑤/|𝑤/'" = 7 :@*(:@ -0
7 :@*(-08

Natalie Parde - UIC CS 421

Add-K smoothing is useful for some tasks,
but still tends to be suboptimal for language
modeling.

Interpolation
• Linear interpolation

• 𝑃; 𝑤Q 𝑤QRS𝑤QR9 = 𝜆9𝑃 𝑤Q 𝑤QRS𝑤QR9 + 𝜆S𝑃 𝑤Q 𝑤QR9 + 𝜆T𝑃(𝑤Q)
• Where ∑% 𝜆% = 1

• Conditional interpolation
• 𝑃A 𝑤/ 𝑤/0"𝑤/0! = 𝜆!(𝑤/0"/0!)𝑃 𝑤/ 𝑤/0"𝑤/0! + 𝜆"(𝑤/0"/0!)𝑃 𝑤/ 𝑤/0! + 𝜆#(𝑤/0"/0!)𝑃(𝑤/)

Context-conditioned weights

Natalie Parde - UIC CS 421

N Weight
3 0.5
2 0.4
1 0.1

N-Gram Probability Value
I ❤ 421 P(421 | I ❤) 0.7
❤ 421 P(421 | ❤) 0.5
421 P(421) 0.2

0.5 ∗ 0.7 + 0.4 ∗ 0.5 + 0.1 ∗ 0.2 = 0.57

N-Gram Probability Value Weight
I ❤ 421 P(421 | I ❤) 0.7 0.5
I 🚕 421 P(421 | I 🚕) 0.7 0.1

Backoff

• If the n-gram we need has zero
counts, approximate it by backing
off to the (n-1)-gram

• Continue backing off until we reach
a size that has non-zero counts

• Just like with smoothing, some
probability mass from higher-order
n-grams needs to be redistributed to
lower-order n-grams

Natalie Parde - UIC CS 421

Katz Backoff

Kneser-Ney Smoothing

• One of the most commonly used and best-performing n-gram smoothing methods
• Incorporates absolute discounting

• 𝑃AbsoluteDiscounting 𝑤! 𝑤!'" = < :?*(:? '=
∑B <(:?*(?)

+ 𝜆 𝑤!'" 𝑃(𝑤!)

Natalie Parde - UIC CS 421

Discounted Bigram Unigram with interpolation weight

Kneser-Ney Smoothing

• Objective: Capture the intuition that although some lower-order n-grams are
frequent, they are mainly only frequent in specific contexts

• tall nonfat decaf peppermint _______
• “york” is a more frequent unigram than “mocha” (7.4 billion results vs. 135

million results on Google), but it’s mainly frequent when it follows the word
“new”

• Creates a unigram model that estimates the probability of seeing the word w as a
novel continuation, in a new unseen context

• Based on the number of different contexts in which w has already appeared
• 𝑃Continuation 𝑤 = ?∶< ?: A,

BC,:C :< BC:C A,

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9)𝑃KN(𝑤G|𝑤GRQNS
GR9)

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9)𝑃KN(𝑤G|𝑤GRQNS
GR9)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤-0! =
𝑑

∑D 𝐶(𝑤-0!𝑣)
𝑤 ∶ 𝑐 𝑤-0!𝑤 > 0

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9)𝑃KN(𝑤G|𝑤GRQNS
GR9)

Normalizing constant to distribute the probability mass that’s been discounted

𝜆 𝑤-0! =
𝑑

∑D 𝐶(𝑤-0!𝑣)
𝑤 ∶ 𝑐 𝑤-0!𝑤 > 0

Normalized discount Number of word types that can follow 𝑤-0!

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9)𝑃KN(𝑤G|𝑤GRQNS
GR9)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams

Natalie Parde - UIC CS 421

Kneser-Ney Smoothing

𝑃KN(𝑤G|𝑤GRQN9
GR9) =

max 𝑐X: 𝑤GRQN9G − 𝑑, 0
∑Y 𝑐X: 𝑤GRQN9GR9 𝑣

+ 𝜆(𝑤GRQN9GR9)𝑃KN(𝑤G|𝑤GRQNS
GR9)

Normalizing constant to distribute the probability mass that’s been discounted

Regular count for the highest-order n-gram, or the number of unique single
word contexts for lower-order n-grams
Discounted n-gram probability …when the recursion terminates, unigrams are interpolated with the
uniform distribution (𝜀 = empty string)

𝑃E& 𝑤 =
max(𝑐E& 𝑤 − 𝑑, 0)

∑FA 𝑐E&(𝑤A) + 𝜆(𝜀)
1
𝑉

Natalie Parde - UIC CS 421

Stupid Backoff
• Gives up the idea of trying to make the language model a true

probability distribution 😌
• No discounting of higher-order probabilities
• If a higher-order n-gram has a zero count, simply backoff to a lower-

order n-gram, weighted by a fixed weight

• 𝑆 𝑤1 𝑤12345125 = $
6(7GHIJK

G)
6(7GHIJK

GHK)
if 𝑐 𝑤123451 > 0

𝜆𝑆 𝑤1 𝑤12348125 otherwise
• Terminates in the unigram, which has the probability:

• 𝑆 𝑤 = G(2)
H

Generally, 0.4 works well (Brants et al., 2007)

Natalie Parde - UIC CS 421

Summary:
Language
Modeling
with N-
Grams

141

N
at

al
ie

 P
ar

de
 -

U
IC

 C
S

42
1

• N-grams: Sequences of n letters
• Language models: Statistical

models of language based on
observed word or character co-
occurrences

• N-gram probabilities can be
computed using maximum
likelihood estimation

• Language models can be
intrinsically evaluated using
perplexity

• Unknown words can be handled
using <UNK> tokens

• Known words in unseen contexts can
be handled using smoothing

